Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29.282
1.
Front Public Health ; 12: 1345244, 2024.
Article En | MEDLINE | ID: mdl-38694976

Background: The global population is experiencing a rapid rise in the quantity and percentage of older people. In an effort to enhance physical activity among older adults, active video games (AVGs) are being suggested as a compelling alternative and are currently under scrutiny to evaluate their efficacy in promoting the health of older people. Objective: This review aims to synthesize current studies and formulate conclusions regarding the impact of AVGs on the health-related physical fitness of older adults. Methods: Seven databases (PubMed, Web of Science, SCOPUS, SPORTDiscus, EMBASE, MEDLINE, and CINAHL) were searched from inception to January 21, 2024. Eligible studies included randomized controlled trials examining the effect of AVGs compared to control conditions on health-related physical fitness outcomes in older adults. The methodological quality of the included trials was assessed using the PEDro scale, and the certainty of evidence was evaluated using the GRADE approach. A random-effects model was used to calculate effect sizes (ES; Hedge's g) between experimental and control groups. Results: The analysis included 24 trials with a total of 1428 older adults (all ≥ 60 years old). Compared to controls, AVGs produced significant increases in muscular strength (moderate ES = 0.64-0.68, p < 0.05) and cardiorespiratory fitness (moderate ES = 0.79, p < 0.001). However, no significant effects were found for body composition (trivial ES = 0.12-0.14; p > 0.05) and flexibility (trivial ES = 0.08; p = 0.677). The beneficial effects of AVGs were greater after a duration of ≥ 12 vs. < 12 weeks (cardiorespiratory fitness; ES = 1.04 vs. 0.29, p = 0.028) and following ≥ 60 minutes vs. < 60 minutes of session duration (muscular strength; ES = 1.20-1.24 vs. 0.27-0.42, p < 0.05). Conclusion: AVGs appear to be an effective tool for enhancing muscular strength and cardiorespiratory fitness in older adults, although their impact on improving body composition and flexibility seems limited. Optimal improvement in cardiorespiratory fitness is associated with a longer duration of AVGs (≥ 12 weeks). Moreover, a session duration of ≥ 60 minutes may provide greater benefits for the muscular strength of older adults. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=482568, identifier CRD42023482568.


Physical Fitness , Video Games , Humans , Physical Fitness/physiology , Aged , Muscle Strength/physiology , Middle Aged , Exercise , Male , Female , Randomized Controlled Trials as Topic
2.
Biomed Res Int ; 2024: 3325321, 2024.
Article En | MEDLINE | ID: mdl-38726292

Introduction: Many COVID-19 patients display adverse symptoms, such as reduced physical ability, poor quality of life, and impaired pulmonary function. Therefore, this systematic review is aimed at evaluating the effectiveness of physical exercise on various psychophysiological indicators among COVID-19 patients who may be at any stage of their illness (i.e., critically ill, hospitalized, postdischarge, and recovering). Methods: A systematic search was conducted in PubMed, Scopus, ScienceDirect, Web of Science, and Google Scholar from 2019 to 2021. Twenty-seven studies, which assessed a total of 1525 patients, were included and analysed. Results: Overall, data revealed significant improvements in the following parameters: physical function, dyspnoea, pulmonary function, quality of life (QOL), lower limb endurance and strength, anxiety, depression, physical activity level, muscle strength, oxygen saturation, fatigue, C-reactive protein (CRP), interleukin 6 (IL-6), tumour necrosis factor-alpha (TNF-α), lymphocyte, leukocytes, and a fibrin degradation product (D-dimer). Conclusions: Physical training turns out to be an effective therapy that minimises the severity of COVID-19 in the intervention group compared to the standard treatment. Therefore, physical training could be incorporated into conventional treatment of COVID-19 patients. More randomized controlled studies with follow-up evaluations are required to evaluate the long-term advantages of physical training. Future research is essential to establish the optimal exercise intensity level and assess the musculoskeletal fitness of recovered COVID-19 patients. This trial is registered with CRD42021283087.


COVID-19 , Quality of Life , Humans , COVID-19/psychology , COVID-19/therapy , COVID-19/physiopathology , SARS-CoV-2 , Exercise Therapy/methods , Exercise/physiology , Muscle Strength/physiology , Adaptation, Physiological , Anxiety/therapy , Anxiety/physiopathology
3.
Lupus Sci Med ; 11(1)2024 May 08.
Article En | MEDLINE | ID: mdl-38724183

OBJECTIVE: This study aimed to evaluate the prevalence of sarcopenia and its clinical significance in Turkish women with SLE, exploring the association between muscle mass, muscle strength and SLE disease activity. METHODS: A cross-sectional study was conducted at Gazi University Hospital's Department of Rheumatology from January to December 2020. It involved 82 patients with SLE, diagnosed according to the 2019 American College of Rheumatology/European Alliance of Associations for Rheumatology criteria, and 69 healthy controls. Sarcopenia was assessed using hand grip dynamometry (hand grip strength (HGS)) and bioelectrical impedance analysis for muscle mass, with sarcopenia defined according to the 2018 European Working Group on Sarcopenia in Older People criteria and specific cut-offs for the Turkish population. The main outcomes measured were the presence of sarcopenia and probable sarcopenia, HGS values, skeletal muscle mass index and SLE Disease Activity Index 2000 (SLEDAI-2K). RESULTS: Among the patients with SLE, 51.2% met the criteria for probable sarcopenia and 12.9% were diagnosed with sarcopenia. The mean HGS was significantly lower in the SLE group (21.7±4.9 kg) compared with controls, indicating reduced muscle strength. The prevalence of anti-double-stranded DNA (anti-dsDNA) antibodies was 82.9%. Multivariate regression analysis identified height and levels of anti-dsDNA antibodies as independent predictors for developing probable sarcopenia. No significant association was found between clinical parameters, including SLEDAI-2K scores, and sarcopenia status. CONCLUSIONS: Sarcopenia is prevalent among Turkish women with SLE, with a significant proportion showing reduced muscle strength. The study found no direct association between sarcopenia and SLE disease activity or clinical parameters. These findings underscore the importance of including muscle strength assessments in the routine clinical evaluation of patients with SLE to potentially improve management and quality of life.


Hand Strength , Lupus Erythematosus, Systemic , Muscle Strength , Sarcopenia , Humans , Sarcopenia/epidemiology , Sarcopenia/physiopathology , Sarcopenia/diagnosis , Female , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/physiopathology , Cross-Sectional Studies , Turkey/epidemiology , Adult , Middle Aged , Prevalence , Case-Control Studies , Antibodies, Antinuclear/blood , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Severity of Illness Index
4.
Sci Rep ; 14(1): 10428, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714762

Muscle strength assessments are vital in rehabilitation, orthopedics, and sports medicine. However, current methods used in clinical settings, such as manual muscle testing and hand-held dynamometers, often lack reliability, and isokinetic dynamometers (IKD), while reliable, are not easily portable. The aim of this study was to design and validate a wearable dynamometry system with high accessibility, accuracy, and reliability, and to validate the device. Therefore, we designed a wearable dynamometry system (WDS) equipped with knee joint torque sensors. To validate this WDS, we measured knee extension and flexion strength in 39 healthy adults using both the IKD and WDS. Comparing maximal isometric torque measurements, WDS and IKD showed strong correlation and good reliability for extension (Pearson's r: 0.900; intraclass correlation coefficient [ICC]: 0.893; standard error of measurement [SEM]: 9.85%; minimal detectable change [MDC]: 27.31%) and flexion (Pearson's r: 0.870; ICC: 0.857; SEM: 11.93%; MDC: 33.07%). WDS demonstrated excellent inter-rater (Pearson's r: 0.990; ICC: 0.993; SEM: 4.05%) and test-retest (Pearson's r: 0.970; ICC: 0.984; SEM: 6.15%) reliability during extension/flexion. User feedback from 35 participants, including healthcare professionals, underscores WDS's positive user experience and clinical potential. The proposed WDS is a suitable alternative to IKD, providing high accuracy, reliability, and potentially greater accessibility.


Knee Joint , Muscle Strength Dynamometer , Muscle Strength , Torque , Wearable Electronic Devices , Humans , Male , Adult , Female , Knee Joint/physiology , Muscle Strength/physiology , Reproducibility of Results , Range of Motion, Articular/physiology , Young Adult , Equipment Design
5.
Eur J Med Res ; 29(1): 266, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698469

BACKGROUND: Fatigue is a relatively prevalent condition among hemodialysis patients, resulting in diminished health-related quality of life and decreased survival rates. The purpose of this study was to investigate the relationship between fatigue and body composition in hemodialysis patients. METHODS: This cross-sectional study included 92 patients in total. Fatigue was measured by Functional Assessment of Chronic Illness Therapy - Fatigue (FACIT-F) (cut-off ≤ 34). Body composition was measured based on quantitative computed tomography (QCT), parameters including skeletal muscle index (SMI), intermuscular adipose tissue (IMAT), and bone mineral density (BMD). Handgrip strength was also collected. To explore the relationship between fatigue and body composition parameters, we conducted correlation analyses and binary logistic regression. RESULTS: The prevalence of fatigue was 37% (n = 34), abnormal bone density was 43.4% (n = 40). There was a positive correlation between handgrip strength and FACIT-F score (r = 0.448, p < 0.001). Age (r = - 0.411, p < 0.001), IMAT % (r = - 0.424, p < 0.001), negatively associated with FACIT-F score. Multivariate logistic regression analysis shows that older age, lower serum phosphorus, higher IMAT% are associated with a high risk of fatigue. CONCLUSION: The significantly increased incidence and degree of fatigue in hemodialysis patients is associated with more intermuscular adipose tissue in paraspinal muscle.


Body Composition , Fatigue , Muscle Strength , Renal Dialysis , Humans , Renal Dialysis/adverse effects , Male , Female , Middle Aged , Fatigue/physiopathology , Fatigue/etiology , Cross-Sectional Studies , Muscle Strength/physiology , Aged , Hand Strength/physiology , Bone Density , Adult , Muscle, Skeletal/physiopathology , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/physiopathology
6.
An Acad Bras Cienc ; 96(2): e20230559, 2024.
Article En | MEDLINE | ID: mdl-38747788

Creatine is consumed by athletes to increase strength and gain muscle. The aim of this study was to evaluate the effects of creatine supplementation on maximal strength and strength endurance. Twelve strength-trained men (25.2 ± 3.4 years) supplemented with 20 g Creatina + 10g maltodextrin or placebo (20g starch + 10g maltodextrin) for five days in randomized order. Maximal strength and strength endurance (4 sets 70% 1RM until concentric failure) were determined in the bench press. In addition, blood lactate, rate of perceived effort, fatigue index, and mood state were evaluated. All measurements were performed before and after the supplementation period. There were no significant changing in maximal strength, blood lactate, RPE, fatigue index, and mood state in either treatment. However, the creatine group performed more repetitions after the supplementation (Cr: Δ = +3.4 reps, p = 0.036, g = 0.53; PLA: Δ = +0.3reps, p = 0.414, g = 0.06), and higher total work (Cr: Δ = +199.5au, p = 0.038, g = 0.52; PLA: Δ = +26.7au, p = 0.402, g = 0.07). Creatine loading for five days allowed the subjects to perform more repetitions, resulting in greater total work, but failed to change the maximum strength.


Creatine , Dietary Supplements , Lactic Acid , Muscle Strength , Physical Endurance , Humans , Male , Adult , Creatine/administration & dosage , Creatine/pharmacology , Creatine/blood , Muscle Strength/drug effects , Muscle Strength/physiology , Physical Endurance/drug effects , Physical Endurance/physiology , Lactic Acid/blood , Young Adult , Resistance Training/methods , Muscle Fatigue/drug effects , Muscle Fatigue/physiology , Double-Blind Method
7.
Front Public Health ; 12: 1373910, 2024.
Article En | MEDLINE | ID: mdl-38694984

Background: Our aim was to analyze the effects of a multicomponent exercise program (MEP) on frailty and physical performance in older adults with HIV (OAWH) since exercise can reverse frailty in the older population overall, but there is no data for OAWH. Methods: A prospective longitudinal study with intervention and control group was designed. Sedentary adults 50 or over with and without HIV were included. The intervention was a 12-week home-based MEP. Dependent variables were frailty (frailty phenotype), physical performance (Senior Fitness Test), muscle mass (ASMI) by bioimpedance. Pre- and postintervention measurements were analyzed using McNemar's test for categorical variables and the Wilcoxon signed-rank test for quantitative variables. Results: 40 OAWH and 20 OA without HIV. The median age was 56.5 years. 23.3% were women. The prevalence of frailty was 6.6% with no frail HIV-negative participants. Three of the four frail HIV-participants transitioned two (50%) from frail to prefrail and one (25%) to robust after the MEP. In participants with an adherence ≥50%, physical performance was significantly improved [basal vs. 12 week]: upper extremity strength [13 (13-15) vs. 16 (15-19), p = 0.0001], lower extremity strength [13 (11-16) vs. 15 (13-16), p = 0.004], aerobic endurance [62 (55-71) vs. 66 (58-80), p = 0.005]. Participants with low adherence experienced a significant worsening in ASMI [8.35 (7.44-9.26) vs. 7.09 (6.08-8.62), p = 0.03]. Conclusion: A 12-week MEP enhances frailty by increasing robustness in OAWH, and improves physical performance, and preserves muscle mass in older adults with good adherence to the MEP independently of HIV status.


Frailty , HIV Infections , Physical Functional Performance , Humans , Female , Male , Middle Aged , Prospective Studies , Longitudinal Studies , Aged , Exercise Therapy/methods , Muscle Strength/physiology , Exercise , Frail Elderly , Muscle, Skeletal
8.
PLoS One ; 19(5): e0303372, 2024.
Article En | MEDLINE | ID: mdl-38739588

OBJECTIVES: Elastic band resistance training in elderly individuals can improve physical fitness and promote mental health in addition to other benefits. This systematic review aimed to review, summarize, and evaluate quantitative, qualitative, and mixed methodological studies on the use of elastic band resistance training in elderly individuals, and to investigate the influence of elastic band resistance training on the physical and mental health of elderly individuals, as well as their preferences and obstacles in training. METHODS: A convergent separation approach was used to synthesize and integrate the results, specifically the mixed systematic review approach recommended by the Joanna Briggs Institute. The extensive search strategy included electronic database searches in the Cochrane Library, PubMed, Embase, Web of Science, Google Scholar, MEDLINE, and CINAHL. The researchers rigorously screened the literature, extracted and analyzed the data, and evaluated the quality of the included studies using the Mixed Methods Appraisal Tool (MMAT). RESULTS: Twenty-eight studies were included, of which 25 were quantitative studies, 2 were qualitative studies, and 1 was a mixed-methods study. A total of 1,697 subjects were investigated across all studies. Quantitative evidence supports the notion that elastic band resistance training can improve upper and lower limb flexibility, endurance, upper strength, physical balance, and cardiopulmonary function and enhance the mental health of elderly individuals. Participants in the qualitative study reported some preferences and obstacles with band resistance training, but most participants reported physical benefits. CONCLUSIONS: Despite the heterogeneity between studies, this review is the first systematic review to comprehensively evaluate the effectiveness of elastic band resistance training in older adults. It not only shows the influence of elastic band resistance training on the physical and mental health of the elderly, but also emphasizes the preference and obstacles of elderly individuals face.


Mental Health , Resistance Training , Humans , Resistance Training/methods , Aged , Physical Fitness/physiology , Physical Fitness/psychology , Muscle Strength/physiology , Male
9.
Trials ; 25(1): 307, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715143

BACKGROUND: Aging has been associated with a progressive loss of skeletal muscle quality, quantity and strength, which may result in a condition known as sarcopenia, leading to a decline in physical performance, loss of independence and reduced quality of life. While the cause of impaired physical functioning observed in elderly populations appears to be multifactorial, recent evidence suggests that age-associated alterations in gut microbiota could be a contributing factor. The primary objective will be to assess the effects of a dietary synbiotic formulation on sarcopenia-related functional outcomes such as handgrip strength, gait speed and physical performance within older individuals living independently. The secondary objective will be to examine associations between changes in gut microbiota composition, functional performance and lean muscle mass. METHODS: Seventy-four elderly (60-85 years) participants will be randomized in a double-blind, placebo-controlled fashion to either an intervention or control group. The intervention group (n = 37) will receive oral synbiotic formulation daily for 16 weeks. The control group (n = 37) will receive placebo. Assessments of physical performance (including Short Physical Performance Battery, handgrip strength and timed up-and-go tests) and muscle ultrasonography will be performed at 4 time points (baseline and weeks 8, 16 and 20). Likewise, body composition via bioelectric impedance analysis and blood and stool samples will be collected at each time point. Dual-energy X-ray absorptiometry will be performed at baseline and week 16. The primary outcomes will be between-group changes in physical performance from baseline to 16 weeks. Secondary outcomes include changes in body composition, muscle mass and architecture, fecal microbiota composition and diversity, and fecal and plasma metabolomics. DISCUSSION: Gut-modulating supplements appear to be effective in modifying gut microbiota composition in healthy older adults. However, it is unclear whether these changes translate into functional and/or health improvements. In the present study, we will investigate the effects of a synbiotic formulation on measures of physical performance, strength and muscle health in healthy older populations. TRIAL REGISTRATION: This study was prospectively registered with the Australian New Zealand Clinical Trials Registry (ACTRN12622000652774) in May 2022.


Gastrointestinal Microbiome , Hand Strength , Muscle Strength , Muscle, Skeletal , Randomized Controlled Trials as Topic , Sarcopenia , Synbiotics , Humans , Double-Blind Method , Aged , Synbiotics/administration & dosage , Aged, 80 and over , Sarcopenia/physiopathology , Sarcopenia/prevention & control , Male , Middle Aged , Female , Australia , Physical Functional Performance , Dietary Supplements , Body Composition , Treatment Outcome , Walking Speed , Australasian People
10.
PLoS One ; 19(5): e0302727, 2024.
Article En | MEDLINE | ID: mdl-38718069

BACKGROUND: Accounting for more than 60% of cancer survivors, older (≥65 years) cancer survivors have a 2- to 5-fold risk of physical function impairment, compared to cancer-free peers. One strategy to improve physical function is dietary and resistance training interventions, which improve muscle strength and mass by stimulating muscle protein synthesis. The E-PROOF (E-intervention for Protein Intake and Resistance Training to Optimize Function) study will examine the feasibility, acceptability, and preliminary efficacy of a 12-week randomized controlled trial of an online, tailored nutritional and resistance training education and counseling intervention to improve physical function and associated health outcomes (muscle strength, health-related quality of life (HRQoL), self-efficacy, and weight management). METHODS: In this study, 70 older cancer survivors will be randomized to one of two groups: experimental (receiving remote behavioral counseling and evidence-based education and resources), and control (general survivorship education). We will examine the intervention effects on physical function, muscle strength, HRQoL, self-efficacy, weight, and waist circumference during a 12-week period between the experimental and control groups. Three months following the end of the intervention, we will conduct a follow-up assessment to measure physical function, muscle strength, and HRQoL. SIGNIFICANCE AND IMPACT: This study is the first synchronous, online protein-focused diet and resistance training intervention among older cancer survivors. This novel study advances science by promoting independent health behaviors among older cancer survivors to improve health outcomes, and provide foundational knowledge to further address this growing problem on a wider scale through online platforms.


Dietary Proteins , Muscle Strength , Quality of Life , Resistance Training , Humans , Resistance Training/methods , Aged , Muscle Strength/physiology , Dietary Proteins/administration & dosage , Male , Cancer Survivors , Female , Self Efficacy
11.
Transpl Int ; 37: 12312, 2024.
Article En | MEDLINE | ID: mdl-38720821

Introduction: Musculoskeletal disorders could be associated with metabolic disorders that are common after kidney transplantation, which could reduce the quality of life of patients. The aim of this study was to assess the prevalence of both musculoskeletal and metabolic disorders in kidney transplant patients. Methods: MEDLINE, CINAHL, Cochrane Library, EMBASE and Web of Science were searched from their inception up to June 2023. DerSimonian and Laird random-effects method was used to calculate pooled prevalence estimates and their 95% confidence intervals (CIs). Results: 21,879 kidney transplant recipients from 38 studies were analysed. The overall proportion of kidney transplant patients with musculoskeletal disorders was 27.2% (95% CI: 18.4-36.0), with low muscle strength (64.5%; 95% CI: 43.1-81.3) being the most common disorder. Otherwise, the overall proportion of kidney transplant patients with metabolic disorders was 37.6% (95% CI: 21.9-53.2), with hypovitaminosis D (81.8%; 95% CI: 67.2-90.8) being the most prevalent disorder. Conclusion: The most common musculoskeletal disorders were low muscle strength, femoral osteopenia, and low muscle mass. Hypovitaminosis D, hyperparathyroidism, and hyperuricemia were also the most common metabolic disorders. These disorders could be associated with poorer quality of life in kidney transplant recipients. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier [CRD42023449171].


Kidney Transplantation , Metabolic Diseases , Musculoskeletal Diseases , Humans , Kidney Transplantation/adverse effects , Prevalence , Musculoskeletal Diseases/epidemiology , Musculoskeletal Diseases/etiology , Metabolic Diseases/epidemiology , Quality of Life , Muscle Strength , Transplant Recipients , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/complications , Bone Diseases, Metabolic/epidemiology , Bone Diseases, Metabolic/etiology , Postoperative Complications/epidemiology , Postoperative Complications/etiology
12.
Arch Esp Urol ; 77(3): 256-262, 2024 Apr.
Article En | MEDLINE | ID: mdl-38715166

OBJECTIVE: This study aimed to investigate the effect of electroacupuncture combined with pelvic floor muscle exercise in the treatment of female overactive bladder (OAB). METHODS: The clinical data of 134 female patients with OAB admitted to our hospital from April 2022 to June 2023 were retrospectively analysed. The patients were divided into the combination group (n = 74) and the single group (n = 60). The general demographic data, total effective rate, pad weight, female sexual function index (FSFI) score, oxford muscle grading scale and incontinence impact questionnaire short form (IIQ-7) were collected. Propensity score matching (PSM) was used to match the baseline data of the two groups at 1:1 ratio, and t test, chi-square test and analysis of variance were used for calculation. RESULTS: A total of 90 patients were selected after PSM. No significant difference in baseline data was found between the two groups (p > 0.05). Before treatment, no significant difference in FSFI score, oxford muscle grading scale and IIQ-7 score was found between the two groups (p > 0.05). The total effective rate of the combination group was higher than that of the single group (p < 0.05). After 3 weeks and 1 month of treatment, in addition to orgasm and sexual desire, the scores of sexual excitement and sexual satisfaction in the combination group were higher than those in the single group (p < 0.05). The combination group displayed higher oxford muscle grading scale and lower IIQ-7 and pad weight than the single group, and the differences were statistically significant (p < 0.05). CONCLUSIONS: The effect of electroacupuncture stimulation combined with pelvic floor muscle exercise is more significant, which can alleviate urinary symptoms, reduce urine leakage, enhance pelvic floor muscle strength and alleviate sexual dysfunction.


Electroacupuncture , Exercise Therapy , Muscle Strength , Pelvic Floor , Sexual Dysfunction, Physiological , Urinary Bladder, Overactive , Humans , Female , Retrospective Studies , Pelvic Floor/physiopathology , Urinary Bladder, Overactive/therapy , Electroacupuncture/methods , Middle Aged , Exercise Therapy/methods , Sexual Dysfunction, Physiological/etiology , Sexual Dysfunction, Physiological/therapy , Combined Modality Therapy , Aged , Adult
13.
Crit Care Sci ; 36: e20240284en, 2024.
Article En, Pt | MEDLINE | ID: mdl-38716961

OBJECTIVE: To examine the physical function and respiratory muscle strength of patients - who recovered from critical COVID-19 - after intensive care unit discharge to the ward on Days one (D1) and seven (D7), and to investigate variables associated with functional impairment. METHODS: This was a prospective cohort study of adult patients with COVID-19 who needed invasive mechanical ventilation, non-invasive ventilation or high-flow nasal cannula and were discharged from the intensive care unit to the ward. Participants were submitted to Medical Research Council sum-score, handgrip strength, maximal inspiratory pressure, maximal expiratory pressure, and short physical performance battery tests. Participants were grouped into two groups according to their need for invasive ventilation: the Invasive Mechanical Ventilation Group (IMV Group) and the Non-Invasive Mechanical Ventilation Group (Non-IMV Group). RESULTS: Patients in the IMV Group (n = 31) were younger and had higher Sequential Organ Failure Assessment scores than those in the Non-IMV Group (n = 33). The short physical performance battery scores (range 0 - 12) on D1 and D7 were 6.1 ± 4.3 and 7.3 ± 3.8, respectively for the Non-Invasive Mechanical Ventilation Group, and 1.3 ± 2.5 and 2.6 ± 3.7, respectively for the IMV Group. The prevalence of intensive care unit-acquired weakness on D7 was 13% for the Non-IMV Group and 72% for the IMV Group. The maximal inspiratory pressure, maximal expiratory pressure, and handgrip strength increased on D7 in both groups, but the maximal expiratory pressure and handgrip strength were still weak. Only maximal inspiratory pressure was recovered (i.e., > 80% of the predicted value) in the Non-IMV Group. Female sex, and the need and duration of invasive mechanical were independently and negatively associated with the short physical performance battery score and handgrip strength. CONCLUSION: Patients who recovered from critical COVID-19 and who received invasive mechanical ventilation presented greater disability than those who were not invasively ventilated. However, they both showed marginal functional improvement during early recovery, regardless of the need for invasive mechanical ventilation. This might highlight the severity of disability caused by SARS-CoV-2.


COVID-19 , Intensive Care Units , Respiration, Artificial , Survivors , Humans , COVID-19/epidemiology , COVID-19/therapy , Male , Female , Middle Aged , Prospective Studies , Aged , Survivors/statistics & numerical data , SARS-CoV-2 , Muscle Strength , Hand Strength , Respiratory Muscles/physiopathology , Physical Functional Performance
14.
Clin Interv Aging ; 19: 745-760, 2024.
Article En | MEDLINE | ID: mdl-38736563

Purpose: The aim of this study is to investigate the effects of a preoperative combined with postoperative moderate-intensity progressive resistance training (PRT) of the operative side in patients with hip osteoarthritis (HOA) who are undergoing total hip arthroplasty (THA). The study seeks to evaluate the impact of this combined intervention on muscle strength, gait, balance, and hip joint function in a controlled, measurable, and objective manner. Additionally, the study aims to compare the outcomes of this combined intervention with those of preoperative or postoperative muscle strength training conducted in isolation. Methods: A total of 90 patients with HOA scheduled for unilateral primary THA were randomly assigned to three groups: Pre group (preoperative PRT), Post group (postoperative PRT), and Pre& Post group (preoperative combined with postoperative PRT) focusing on hip flexion, extension, adduction, and abduction of operated side. Muscle strength, gait parameters, balance, and hip function were assessed at specific time points during a 12-month follow-up period. Results: All three groups showed significant improvements in muscle strength, with the Pre& Post group demonstrating the most pronounced and sustained gains. Gait velocity and cadence were significantly improved in the Pre& Post group at 1-month and 3-month postoperative follow-ups compared to the other groups. Similarly, the Pre& Post group exhibited superior balance performance at 3-month and 12-month postoperative follow-ups. The Harris Hip Score also showed better outcomes in the Pre& Post group at all follow-up intervals. Conclusion: Preoperative combined with postoperative moderate-intensity PRT in HOA patients undergoing THA led to superior improvements in muscle strength, gait, balance, and hip joint function compared to preoperative or postoperative PRT alone. This intervention shows significant promise in optimizing postoperative rehabilitation and enhancing patient outcomes following THA.


Arthroplasty, Replacement, Hip , Gait , Muscle Strength , Osteoarthritis, Hip , Postural Balance , Resistance Training , Humans , Arthroplasty, Replacement, Hip/rehabilitation , Male , Female , Resistance Training/methods , Aged , Middle Aged , Osteoarthritis, Hip/surgery , Prospective Studies , Range of Motion, Articular , Treatment Outcome , Hip Joint/surgery , Postoperative Period
15.
Int J Chron Obstruct Pulmon Dis ; 19: 995-1010, 2024.
Article En | MEDLINE | ID: mdl-38737191

Purpose: To present the preliminarily findings regarding the effects of a herbal medicine, Ninjin'yoeito, on comorbid frailty and sarcopenia in patients with chronic obstructive pulmonary disease (COPD). Patients and Methods: Patients with COPD (GOLD II or higher) and fatigue were randomly assigned to Group A (n = 28; no medication for 12 weeks, followed by 12-week administration) or B (n= 25; 24-week continuous administration). Visual analog scale (VAS) symptoms of fatigue, the COPD assessment test (CAT), and the modified Medical Research Council (mMRC) Dyspnea Scale were examined. Physical indices such asknee extension leg strength and walking speed, skeletal muscle mass index (SMI), and respiratory function test were also measured. Results: VAS fatigue scales in Group B significantly improved after 4, 8, and 12 weeks compared to those in Group A (each p<0.001, respectively). Right and left knee extension leg strength in Group B significantly improved after 12 weeks compared to that in Group A (p=0.042 and p=0.037, respectively). The 1-s walking speed for continued to increase significantly over 24 weeks in Group B (p=0.016, p<0.001, p<0.001, p=0.004, p<0.001, and p<0.001 after 4, 8, 12, 16, 20, and 24 weeks, respectively); it also significantly increased after the administration of Ninjin'yoeito in Group A. In Group B, the SMI significantly increased at 12 weeks in patients with sarcopenia (p=0.025). The CAT scores in Group B significantly improved after 12 weeks compared to those in Group A (p=0.006). The mMRC scores in Group B also significantly improved after 8 and 12 weeks compared to those in Group A (p= 0.045 and p <0.001, respectively). The changes in %FEV1.0 in Group B were significantly improved at 12 and 24 weeks (p=0.039 and p=0.036, respectively). Conclusion: Overall, Ninjin'yoeito significantly improved patients' quality of life, physical activity, muscle mass, and possibly lung function, suggesting that Ninjin'yoeito may improve frailty and sarcopenia in patients with COPD.


Drugs, Chinese Herbal , Exercise Tolerance , Frailty , Lung , Muscle Strength , Pulmonary Disease, Chronic Obstructive , Sarcopenia , Humans , Sarcopenia/physiopathology , Sarcopenia/diagnosis , Sarcopenia/epidemiology , Sarcopenia/drug therapy , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/complications , Male , Female , Aged , Treatment Outcome , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/adverse effects , Middle Aged , Muscle Strength/drug effects , Lung/physiopathology , Lung/drug effects , Time Factors , Exercise Tolerance/drug effects , Frailty/diagnosis , Frailty/physiopathology , Frailty/epidemiology , Comorbidity , Fatigue/physiopathology , Fatigue/drug therapy , Fatigue/diagnosis , Recovery of Function , Functional Status , Frail Elderly , Walking Speed
16.
Nutrients ; 16(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732571

The use of creatine monohydrate (Cr) in professional soccer is widely documented. However, the effect of low doses of Cr on the physical performance of young soccer players is unknown. This study determined the effect of a low dose of orally administered Cr on muscle power after acute intra-session fatigue in young soccer players. Twenty-eight young soccer players (mean age = 17.1 ± 0.9 years) were randomly assigned to either a Cr (n = 14, 0.3 g·kg-1·day-1 for 14 days) or placebo group (n = 14), using a two-group matched, double-blind, placebo-controlled design. Before and after supplementation, participants performed 21 repetitions of 30 m (fatigue induction), and then, to measure muscle power, they performed four repetitions in half back squat (HBS) at 65% of 1RM. Statistical analysis included a two-factor ANOVA (p ˂ 0.05). Bar velocity at HBS, time: p = 0.0006, ŋp2 = 0.22; group: p = 0.0431, ŋp2 = 0.12, time × group p = 0.0744, ŋp2 = 0.02. Power at HBS, time: p = 0.0006, ŋp2 = 0.12; group: p = 0.16, ŋp2 = 0.06, time × group: p = 0.17, ŋp2 = 0.009. At the end of the study, it was found that, after the induction of acute intra-session fatigue, a low dose of Cr administered orally increases muscle power in young soccer players.


Creatine , Dietary Supplements , Muscle Fatigue , Muscle Strength , Soccer , Humans , Soccer/physiology , Creatine/administration & dosage , Adolescent , Double-Blind Method , Male , Muscle Fatigue/drug effects , Administration, Oral , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Athletic Performance/physiology , Athletes
17.
Nutrients ; 16(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38732628

Community screening for sarcopenia is complex, with barriers including access to specialized equipment and trained staff to conduct body composition, strength and function assessment. In the current study, self-reported dietary protein intake and physical activity (PA) in adults ≥65 years was assessed relative to sarcopenia risk, as determined by body composition, strength and physical function assessments, consistent with the European Working Group on Sarcopenia in Older People (EWGSOP) definition. Of those screened (n = 632), 92 participants (77% female) were assessed as being at high risk of developing sarcopenia on the basis of dietary protein intake ≤1 g∙kg-1∙day-1 [0.9 (0.7-0.9) g∙kg-1∙day-1] and moderate intensity physical activity <150 min.week-1. A further 31 participants (65% female) were defined as being at low risk, with both protein intake [1.2 (1.1-1.5) g∙kg-1∙day-1] and PA greater than the cut-off values. High-risk participants had reduced % lean mass [53.5 (7.8)% versus 54.8 (6.1)%, p < 0.001] and impaired strength and physical function. Notably, high-risk females exhibited greater deficits in lean mass and strength, with minimal differences between groups for males. In community-dwelling older adults, self-reported low protein intake and low weekly PA is associated with heightened risk for sarcopenia, particularly in older women. Future research should determine whether early intervention in older adults with low protein intake and PA attenuates functional decline.


Dietary Proteins , Exercise , Independent Living , Sarcopenia , Humans , Sarcopenia/epidemiology , Female , Male , Aged , Dietary Proteins/administration & dosage , Body Composition , Risk Factors , Aged, 80 and over , Muscle Strength , Geriatric Assessment/methods , Self Report
18.
Dev Neurorehabil ; 27(1-2): 17-26, 2024.
Article En | MEDLINE | ID: mdl-38650431

The aim of this study was to compare the impact of 8-weeks of power exercises compared to traditional strength exercises on motor abilities, muscle performance, and functional strength in children with ADHD. A total of 34 children with ADHD were randomized into two groups to receive functional power training (n = 17, M age: 121.2 ± 16.6 months) and traditional strength training (n = 17, M age: 116.1 ± 13.4 months). After the 8-week intervention, two-way ANOVA results with 95% confidence intervals showed no differences between the groups in motor skills, muscle power, or functional muscle strength. However, the functional power training group had larger effect sizes and greater increases in total motor composite score (10% vs 7%), body coordination (13.8% vs 4.9%) and bilateral coordination (38.8% vs 27.9%) than the traditional strength training group. The power training group also exhibited catch-up growth with typically developing peers. These findings suggest that power exercises may be more effective than strength exercises for rapid force generation in daily life, particularly for children with ADHD.


Attention Deficit Disorder with Hyperactivity , Motor Skills , Muscle Strength , Resistance Training , Humans , Attention Deficit Disorder with Hyperactivity/rehabilitation , Attention Deficit Disorder with Hyperactivity/physiopathology , Male , Muscle Strength/physiology , Female , Child , Single-Blind Method , Motor Skills/physiology , Resistance Training/methods , Treatment Outcome
19.
Nutrients ; 16(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38674836

This study aimed to explore the effects of acute ingestion of caffeine capsules on muscle strength and muscle endurance. We searched the PubMed, Web of Science, Cochrane, Scopus, and EBSCO databases. Data were pooled using the weighted mean difference (WMD) and 95% confidence interval. Fourteen studies fulfilled the inclusion criteria. The acute ingestion of caffeine capsules significantly improved muscle strength (WMD, 7.09, p < 0.00001) and muscle endurance (WMD, 1.37; p < 0.00001), especially in males (muscle strength, WMD, 7.59, p < 0.00001; muscle endurance, WMD, 1.40, p < 0.00001). Subgroup analyses showed that ≥ 6 mg/kg body weight of caffeine (WMD, 6.35, p < 0.00001) and ingesting caffeine 45 min pre-exercise (WMD, 8.61, p < 0.00001) were more effective in improving muscle strength, with the acute ingestion of caffeine capsules having a greater effect on lower body muscle strength (WMD, 10.19, p < 0.00001). In addition, the acute ingestion of caffeine capsules had a greater effect in moderate-intensity muscle endurance tests (WMD, 1.76, p < 0.00001). An acute ingestion of caffeine capsules significantly improved muscle strength and muscle endurance in the upper body and lower body of males.


Caffeine , Capsules , Muscle Strength , Physical Endurance , Adult , Female , Humans , Male , Young Adult , Caffeine/administration & dosage , Caffeine/pharmacology , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Physical Endurance/drug effects
20.
Free Radic Biol Med ; 219: 112-126, 2024 Jul.
Article En | MEDLINE | ID: mdl-38574978

The purpose of this study was to identify causes of quadriceps muscle weakness in facioscapulohumeral muscular dystrophy (FSHD). To this aim, we evaluated quadriceps muscle and fat volumes by magnetic resonance imaging and their relationships with muscle strength and oxidative stress markers in adult patients with FSHD (n = 32) and healthy controls (n = 7), and the effect of antioxidant supplementation in 20 of the 32 patients with FSHD (n = 10 supplementation and n = 10 placebo) (NCT01596803). Compared with healthy controls, the dominant quadriceps strength and quality (muscle strength per unit of muscle volume) were decreased in patients with FSHD. In addition, fat volume was increased, without changes in total muscle volume. Moreover, in patients with FSHD, the lower strength of the non-dominant quadriceps was associated with lower muscle quality compared with the dominant muscle. Antioxidant supplementation significantly changed muscle and fat volumes in the non-dominant quadriceps, and muscle quality in the dominant quadriceps. This was associated with improved muscle strength (both quadriceps) and antioxidant response. These findings suggest that quadriceps muscle strength decline may not be simply explained by atrophy and may be influenced also by the muscle intrinsic characteristics. As FSHD is associated with increased oxidative stress, supplementation might reduce oxidative stress and increase antioxidant defenses, promoting changes in muscle function.


Antioxidants , Dietary Supplements , Muscle Strength , Muscular Dystrophy, Facioscapulohumeral , Oxidative Stress , Quadriceps Muscle , Humans , Muscular Dystrophy, Facioscapulohumeral/drug therapy , Muscular Dystrophy, Facioscapulohumeral/physiopathology , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/diet therapy , Muscular Dystrophy, Facioscapulohumeral/pathology , Oxidative Stress/drug effects , Antioxidants/administration & dosage , Antioxidants/metabolism , Antioxidants/therapeutic use , Male , Female , Muscle Strength/drug effects , Adult , Middle Aged , Quadriceps Muscle/metabolism , Quadriceps Muscle/pathology , Quadriceps Muscle/physiopathology , Quadriceps Muscle/drug effects , Magnetic Resonance Imaging , Adipose Tissue/metabolism , Adipose Tissue/drug effects
...